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Abstract: Dimension reduction, cost efficiency, and environmental sustainability are important factors
in absorbent designs. Geopolymers represent an eco-friendly and cost-efficient solution for such
applications, and the objective of this study is to develop new geopolymer-based composites with
tailored dielectric properties. To develop such composites, different formulations based on three types
of carbon and various surfactants are tested. The nonionic surfactant is preferred over the anionic
surfactant. Dielectric investigations between 2 and 3.3 GHz are performed. The results reveal that the
carbon content and its type (origin) have significant effects on the dielectric characteristics and less on
the magnetic characteristics. Indeed, an increase in permittivity from 2 to 24 and an increase from
0.09 to 0.6 for loss tangent are shown with changes in the carbon content and type. A permittivity (ε)
of 2.27 and loss (tan δ) of 0.19 are obtained for a pore size of 1.6 mm, for the carbon type with the
lowest purity, and with a nonionic surfactant. Finally, it is shown that the addition of magnetite has
little impact on the overall magnetic properties of the geopolymer.
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1. Introduction

Recently, many studies on dielectric properties have been performed at different charge rates
for various particles (ferrite, carbon black, among others) in polymer matrices and compared to
the properties of the matrix alone. They showed the different types of composites that have a
high frequency polyurethane matrix (GHz range) [1,2]. For example, in the range 1–40 GHz [3,4],
the microwave absorber used is a mixed foam-like material, which is between polyurethane and
polystyrene-carbon with neoprene binders, typically used to prepare microwave absorbent foams
for anechoic chambers [5,6]. The most used absorbents are mixed carbonyl ions (e.g., carbon black,
graphite powder, carbon nanoparticles) [7] and ferrites [8] with polymers, such as plastic or rubber,
in sheets or as foam. To improve absorption characteristics, another class of microwave absorbers has
been developed, which is a matrix of conductive polymers with different dielectric and magnetic fillers.
For excellent dielectric properties and low-density carbon materials in various forms, such as graphite,
carbon black, carbon nanotubes, and carbon fibers, microwave absorbers can be used in the preparation
of wave-absorbing materials [9]. Many studies have modified carbon material or combined carbon
materials with other products, such as biochar [10,11].

As geopolymer materials are eco-friendly and energy efficient, they can be used to reduce
pollution. These materials can be defined as amorphous aluminosilicate binders that are synthesized
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by the activation of an aluminosilicate source by an alkaline solution at atmospheric pressure and
a temperature below 100 ◦C [12]. Such materials are also defined by the accurate control of their
porosity, as they can be dense or turned into foams [13,14]. To control the porosity of the foam, the use
of a surfactant can be added. Surfactants are foaming agents, which, in small amounts in solution,
can accelerate the formation of foam and ensure stability by preventing collapse. Surfactants can be
either natural or of synthetic origin, and ionic or nonionic. The chemical nature of the surfactant will
indicate the interactions that govern the hydrophobic attractive interactions between hydrocarbons
and the steric and electrostatic repulsive interactions between the polar heads [15]. The critical
micellar concentration (CMC) is the concentration from which a surfactant self-associates as a micelle,
which depends on the chemical nature of the surfactant [16]. The characteristics of surfactants are
highly dependent on the nature of the medium and in particular on the presence of an electrolyte.
Indeed, depending on the population of counter-ions, the cohesion between molecules is more or less
strong, limiting electrostatic repulsion between neighboring polar groups [17]. The counter-ions will
adsorb with the surfactant at the liquid/air interface. The increase in the degree of association of the
counter-ions makes it possible to decrease the CMC, and thus the value of the surface tension. The CMC
value depends on the nature of the counter ion and decreases in the following order: Li+ > Na+ > K+ >

Cs [18].
In this study, new geopolymer compositions based on various types of carbon and surfactants,

with tailored dielectric properties, for absorbents are developed. The influence of the type and
concentration of the surfactant on the geopolymer, as well as its carbon nature and content, are studied
with respect to the dielectric and magnetic properties.

2. Results

2.1. Surfactant Impact

Figure 1 shows the volume expansion of the cured samples with 3% biochar (GB) and various
types and proportions of surfactant (0.1–1.5 wt.%). Two types of surfactant are used: nonionic (BG, CG,
APG, and LQ) and anionic (H66 and Tego). The values of ∆h (calculated with Equation (1) presented
in the Technical characterization section) vary depending on the type of surfactant. The use of the BG
surfactant induces an increase in ∆h by 50%, and afterwards, a decrease is observed. This phenomenon
is related to the variation in the interfacial strength reaching a maximum, which corresponds to the
CMC [19]. With the CG or APG surfactants, the upper limit is reached at 1% (∆h = 50%) [20]. The CMC
for BG is at 0.5% addition of surfactant, whereas for CG, APG, and 80-LQ, it is at 1% addition of
surfactant. When the surfactant content increases, first, there is a formation of aggregates, which,
at a high concentration, lead to the formation of a layer over the surface [21]. The same behavior
is observed in the presence of anionic surfactants. A maximum of ∆h = 19 and 31% is reached for
0.1% and 0.5% of Tego and H66, respectively. The CMC for anionic surfactants is at 0.5% for H66
and at 0.1% for Tego. Nevertheless, this maximum is weaker than for the anionic surfactant. In fact,
the reduction in the electrostatic repulsion between the ionic surfactant head groups in the mixed
micelle, owing to the insertion of nonionic hydrophilic groups between these charged groups, is the
cause of enhanced micelle formation [22]. Thus, the surfactant CMC and type control the volume
expansion. On one hand, the variation of the physicochemical properties of the surfactant above and
below the CMC influences the foam stability. Indeed, around the CMC, the surfactant molecules
adsorb at the interface of the bubbles to decrease the surface tension, which promotes the foaming and
thus the foam expansion [23–25]. Above the CMC and for higher concentrations, the surface tension
remains low, but the addition of surfactant increases the viscosity of the mixture, which inhibits the
foaming and explains the decrease of the foam expansion. In the case of geopolymer, where several
ions are in solution, non-ionic surfactants have a more pronounced effect owing to their hydrophilic
groups without electric charges [26].
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anionic: ■ Tego; ■ H66). 

To understand the impact of the surfactant on the foam formation based on several types of 
carbon, Figure 2 shows the Δh variation function of the pore size (as determined from the software 
“ImageJ” [27]) for the three types of carbon (3 wt.%) with 0.1 wt.% of various surfactants. For the 
biochar carbon (Figure 2a), we observe an increase in the pore size with the volume expansion. 
Globally, the nonionic surfactants display a fast increase to reach the maximum with BG (v = 1.6 
mm and Δh = 38%). The CG surfactant has the lowest pore size and lowest volume expansion of 
approximately 0.4 mm and 9%, respectively. For anionic surfactants, the pore size remains weak at 
0.4 mm (Δh = 6%) and 0.6 mm (Δh = 18%) for H66 and Tego, respectively. Graphite 75 and 99 also 
induce the same behavior for nonionic surfactants (Figure 2b,c). The BG surfactant shows the highest 
pore size of approximately 1.7 mm for a volume expansion of 40%, whereas the CG surfactant induces 
the lowest pore size of approximately 0.9 mm for a volume expansion of 17%. This can be explained 
by an open macro porous network leading to porosity [28]. The anionic surfactants used lead to a 
decrease of v with volume expansion in agreement with the CMC value, which was exceeded. Tego 
653 induces a pore size of 0.4 mm for a volume expansion of 19%, whereas the H66 surfactant induces 
a pore size of 0.9 mm for a volume expansion of 10% (Figure 2c). To explain this behavior, it should 
be pointed out that anionic surfactants have electrostatic charges that can interact with the alkaline 
cations in the reaction mixture, thus limiting pore coalescence, as evidenced by Ping et al. [17]. 
Conversely, non-ionic surfactants will promote the coalescence of bubbles during the formation, and 
thus higher pore sizes [29]. Regardless of the type of carbon, the particle size is between 40 and 120 
µm. The carbon content introduced is kept constant to avoid any changes. Nevertheless, biochar 
contains some organic compounds, graphite 75 contains fly ash, and graphite 99 is the purest. In the 
presence of an anionic surfactant, regardless of the type of carbon, the surface concentration 
corresponds to a closely packed monolayer of molecules oriented parallel to the surface [30], which 
are responsible for steric hindrance favoring the pore size. In the presence of the anionic surfactant, 
the decrease in pore size can be explained by the effect of only stripe patterns at the surface, which 
minimizes the bubbles and, consequently, the pore size [31]. The pore size and volume expansion 
values are presented in Table 1. In particular, for a percentage of 0.1%, the expansion values and pore 
size were similar for BG and GG75 at approximately 38% and 1.6 mm, respectively, and at 25% and 
2.5 mm for GG99. This can be explained by the powder purity. In the presence of a synthetic powder, 
such as GG99, geopolymerization reactions are not modified; however, with impurities from the 
secondary reactions that occur, there is a limitation of expansion [32]. 

Figure 1. The evolution of volume expansion in the function of the weight percentage of various
surfactants for biochar (GB) samples with 3% of carbon (non-ionic: • BG; • CG; # APG; # LQ; anionic:
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To understand the impact of the surfactant on the foam formation based on several types of
carbon, Figure 2 shows the ∆h variation function of the pore size (as determined from the software
“ImageJ” [27]) for the three types of carbon (3 wt.%) with 0.1 wt.% of various surfactants. For the
biochar carbon (Figure 2a), we observe an increase in the pore size with the volume expansion. Globally,
the nonionic surfactants display a fast increase to reach the maximum with BG (Γv = 1.6 mm and
∆h = 38%). The CG surfactant has the lowest pore size and lowest volume expansion of approximately
0.4 mm and 9%, respectively. For anionic surfactants, the pore size remains weak at 0.4 mm (∆h = 6%)
and 0.6 mm (∆h = 18%) for H66 and Tego, respectively. Graphite 75 and 99 also induce the same
behavior for nonionic surfactants (Figure 2b,c). The BG surfactant shows the highest pore size of
approximately 1.7 mm for a volume expansion of 40%, whereas the CG surfactant induces the lowest
pore size of approximately 0.9 mm for a volume expansion of 17%. This can be explained by an open
macro porous network leading to porosity [28]. The anionic surfactants used lead to a decrease of Γv
with volume expansion in agreement with the CMC value, which was exceeded. Tego 653 induces a
pore size of 0.4 mm for a volume expansion of 19%, whereas the H66 surfactant induces a pore size
of 0.9 mm for a volume expansion of 10% (Figure 2c). To explain this behavior, it should be pointed
out that anionic surfactants have electrostatic charges that can interact with the alkaline cations in
the reaction mixture, thus limiting pore coalescence, as evidenced by Ping et al. [17]. Conversely,
non-ionic surfactants will promote the coalescence of bubbles during the formation, and thus higher
pore sizes [29]. Regardless of the type of carbon, the particle size is between 40 and 120 µm. The carbon
content introduced is kept constant to avoid any changes. Nevertheless, biochar contains some
organic compounds, graphite 75 contains fly ash, and graphite 99 is the purest. In the presence of
an anionic surfactant, regardless of the type of carbon, the surface concentration corresponds to a
closely packed monolayer of molecules oriented parallel to the surface [30], which are responsible
for steric hindrance favoring the pore size. In the presence of the anionic surfactant, the decrease
in pore size can be explained by the effect of only stripe patterns at the surface, which minimizes
the bubbles and, consequently, the pore size [31]. The pore size and volume expansion values are
presented in Table 1. In particular, for a percentage of 0.1%, the expansion values and pore size were
similar for BG and GG75 at approximately 38% and 1.6 mm, respectively, and at 25% and 2.5 mm for
GG99. This can be explained by the powder purity. In the presence of a synthetic powder, such as
GG99, geopolymerization reactions are not modified; however, with impurities from the secondary
reactions that occur, there is a limitation of expansion [32].
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closed pores. Small differences can be observed in the function of carbon nature. However, the main 
difference is the texture of the samples, which seems to be controlled by the surfactant type. In fact, 
using the BG surfactant, the samples are foam and more pores are observed, owing to the high 
volume expansion induced by this type of surfactant at 0.1 wt.% addition. All other types of 
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Figure 2. Pore size function of volume expansion of 0.1% addition of various surfactants for GB (a),
GG75 (b), and GG99 (c) samples with 3% carbon (non-ionic: • BG; • CG; # APG; # LQ; anionic: � Tego;
� H66).

Table 1. Volume expansion and pore size function of percentage of various type of surfactant for
biochar and graphite based geopolymers.

Type of
Surfactant

Percentage of
Surfactant

Volume Expansion (%) Pore Size (mm)

Biochar Graphite
75%

Graphite
99% Biochar Graphite

75%
Graphite

99%

BG 0.1 38 40 25 1.6 1.7 2.5
CG 0.1 9 18 7 0.4 0.9 0.6

APG 0.1 11 19 16 1.0 1.3 1.7
LQ 0.1 9 18 9 0.5 1.0 1.0

Tego 0.1 19 25 19 0.6 0.6 0.4
H66 0.1 6 11 10 0.4 1.2 0.9

The internal morphologies of the samples based on biochar and various types of surfactant are
presented in Table 2. All samples exhibit a gray color owing to the black color of carbon and spherical
closed pores. Small differences can be observed in the function of carbon nature. However, the main
difference is the texture of the samples, which seems to be controlled by the surfactant type. In fact,
using the BG surfactant, the samples are foam and more pores are observed, owing to the high volume
expansion induced by this type of surfactant at 0.1 wt.% addition. All other types of surfactants for an
addition of 0.1% induced dense samples for all types of carbon used.
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Table 2. Visual aspect and internal morphology of samples based on various type of carbon with 0.1%
addition of different types of surfactants.

Name of Surfactant
Internal Morphology

Biochar Graphite 75 Graphite 99

BG

Molecules 2020, 25, x 5 of 15 

 

Table 2. Visual aspect and internal morphology of samples based on various type of carbon with 0.1% 
addition of different types of surfactants. 

Name of Surfactant 
Internal Morphology 

Biochar Graphite 75 Graphite 99 

BG 

   

CG 

   

Tego 

   

H66 

   

In order to more precisely investigate the microstructure, an example of SEM images obtained 
for GB, GG75, and GG99 samples using 0.1 wt.% of BG surfactant is given in Figure 3. 

   
(a) (b) (c) 

Figure 3. SEM micrographs of (a) GB, (b) GG75, and (c) GG99 samples. 

Whatever the sample, a porous structure distributed homogeneously throughout the matrix is 
noticed. The tubular microstructure is attributed to basalt fibers added in all samples. GB samples 
show small spherical pores. More coalesce of pores is observed in the case of GG75 and especially for 
the GG99 sample. Consequently, small differences can be detected in the function of carbon type. 
However, the type of surfactant is responsible for the obtained microstructure. 
  

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

Molecules 2020, 25, x 5 of 15 

 

Table 2. Visual aspect and internal morphology of samples based on various type of carbon with 0.1% 
addition of different types of surfactants. 

Name of Surfactant 
Internal Morphology 

Biochar Graphite 75 Graphite 99 

BG 

   

CG 

   

Tego 

   

H66 

   

In order to more precisely investigate the microstructure, an example of SEM images obtained 
for GB, GG75, and GG99 samples using 0.1 wt.% of BG surfactant is given in Figure 3. 

   
(a) (b) (c) 

Figure 3. SEM micrographs of (a) GB, (b) GG75, and (c) GG99 samples. 

Whatever the sample, a porous structure distributed homogeneously throughout the matrix is 
noticed. The tubular microstructure is attributed to basalt fibers added in all samples. GB samples 
show small spherical pores. More coalesce of pores is observed in the case of GG75 and especially for 
the GG99 sample. Consequently, small differences can be detected in the function of carbon type. 
However, the type of surfactant is responsible for the obtained microstructure. 
  

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

Molecules 2020, 25, x 5 of 15 

 

Table 2. Visual aspect and internal morphology of samples based on various type of carbon with 0.1% 
addition of different types of surfactants. 

Name of Surfactant 
Internal Morphology 

Biochar Graphite 75 Graphite 99 

BG 

   

CG 

   

Tego 

   

H66 

   

In order to more precisely investigate the microstructure, an example of SEM images obtained 
for GB, GG75, and GG99 samples using 0.1 wt.% of BG surfactant is given in Figure 3. 

   
(a) (b) (c) 

Figure 3. SEM micrographs of (a) GB, (b) GG75, and (c) GG99 samples. 

Whatever the sample, a porous structure distributed homogeneously throughout the matrix is 
noticed. The tubular microstructure is attributed to basalt fibers added in all samples. GB samples 
show small spherical pores. More coalesce of pores is observed in the case of GG75 and especially for 
the GG99 sample. Consequently, small differences can be detected in the function of carbon type. 
However, the type of surfactant is responsible for the obtained microstructure. 
  

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

CG

Molecules 2020, 25, x 5 of 15 

 

Table 2. Visual aspect and internal morphology of samples based on various type of carbon with 0.1% 
addition of different types of surfactants. 

Name of Surfactant 
Internal Morphology 

Biochar Graphite 75 Graphite 99 

BG 

   

CG 

   

Tego 

   

H66 

   

In order to more precisely investigate the microstructure, an example of SEM images obtained 
for GB, GG75, and GG99 samples using 0.1 wt.% of BG surfactant is given in Figure 3. 

   
(a) (b) (c) 

Figure 3. SEM micrographs of (a) GB, (b) GG75, and (c) GG99 samples. 

Whatever the sample, a porous structure distributed homogeneously throughout the matrix is 
noticed. The tubular microstructure is attributed to basalt fibers added in all samples. GB samples 
show small spherical pores. More coalesce of pores is observed in the case of GG75 and especially for 
the GG99 sample. Consequently, small differences can be detected in the function of carbon type. 
However, the type of surfactant is responsible for the obtained microstructure. 
  

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

Molecules 2020, 25, x 5 of 15 

 

Table 2. Visual aspect and internal morphology of samples based on various type of carbon with 0.1% 
addition of different types of surfactants. 

Name of Surfactant 
Internal Morphology 

Biochar Graphite 75 Graphite 99 

BG 

   

CG 

   

Tego 

   

H66 

   

In order to more precisely investigate the microstructure, an example of SEM images obtained 
for GB, GG75, and GG99 samples using 0.1 wt.% of BG surfactant is given in Figure 3. 

   
(a) (b) (c) 

Figure 3. SEM micrographs of (a) GB, (b) GG75, and (c) GG99 samples. 

Whatever the sample, a porous structure distributed homogeneously throughout the matrix is 
noticed. The tubular microstructure is attributed to basalt fibers added in all samples. GB samples 
show small spherical pores. More coalesce of pores is observed in the case of GG75 and especially for 
the GG99 sample. Consequently, small differences can be detected in the function of carbon type. 
However, the type of surfactant is responsible for the obtained microstructure. 
  

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

Molecules 2020, 25, x 5 of 15 

 

Table 2. Visual aspect and internal morphology of samples based on various type of carbon with 0.1% 
addition of different types of surfactants. 

Name of Surfactant 
Internal Morphology 

Biochar Graphite 75 Graphite 99 

BG 

   

CG 

   

Tego 

   

H66 

   

In order to more precisely investigate the microstructure, an example of SEM images obtained 
for GB, GG75, and GG99 samples using 0.1 wt.% of BG surfactant is given in Figure 3. 

   
(a) (b) (c) 

Figure 3. SEM micrographs of (a) GB, (b) GG75, and (c) GG99 samples. 

Whatever the sample, a porous structure distributed homogeneously throughout the matrix is 
noticed. The tubular microstructure is attributed to basalt fibers added in all samples. GB samples 
show small spherical pores. More coalesce of pores is observed in the case of GG75 and especially for 
the GG99 sample. Consequently, small differences can be detected in the function of carbon type. 
However, the type of surfactant is responsible for the obtained microstructure. 
  

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

Tego

Molecules 2020, 25, x 5 of 15 

 

Table 2. Visual aspect and internal morphology of samples based on various type of carbon with 0.1% 
addition of different types of surfactants. 

Name of Surfactant 
Internal Morphology 

Biochar Graphite 75 Graphite 99 

BG 

   

CG 

   

Tego 

   

H66 

   

In order to more precisely investigate the microstructure, an example of SEM images obtained 
for GB, GG75, and GG99 samples using 0.1 wt.% of BG surfactant is given in Figure 3. 

   
(a) (b) (c) 

Figure 3. SEM micrographs of (a) GB, (b) GG75, and (c) GG99 samples. 

Whatever the sample, a porous structure distributed homogeneously throughout the matrix is 
noticed. The tubular microstructure is attributed to basalt fibers added in all samples. GB samples 
show small spherical pores. More coalesce of pores is observed in the case of GG75 and especially for 
the GG99 sample. Consequently, small differences can be detected in the function of carbon type. 
However, the type of surfactant is responsible for the obtained microstructure. 
  

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

Molecules 2020, 25, x 5 of 15 

 

Table 2. Visual aspect and internal morphology of samples based on various type of carbon with 0.1% 
addition of different types of surfactants. 

Name of Surfactant 
Internal Morphology 

Biochar Graphite 75 Graphite 99 

BG 

   

CG 

   

Tego 

   

H66 

   

In order to more precisely investigate the microstructure, an example of SEM images obtained 
for GB, GG75, and GG99 samples using 0.1 wt.% of BG surfactant is given in Figure 3. 

   
(a) (b) (c) 

Figure 3. SEM micrographs of (a) GB, (b) GG75, and (c) GG99 samples. 

Whatever the sample, a porous structure distributed homogeneously throughout the matrix is 
noticed. The tubular microstructure is attributed to basalt fibers added in all samples. GB samples 
show small spherical pores. More coalesce of pores is observed in the case of GG75 and especially for 
the GG99 sample. Consequently, small differences can be detected in the function of carbon type. 
However, the type of surfactant is responsible for the obtained microstructure. 
  

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

Molecules 2020, 25, x 5 of 15 

 

Table 2. Visual aspect and internal morphology of samples based on various type of carbon with 0.1% 
addition of different types of surfactants. 

Name of Surfactant 
Internal Morphology 

Biochar Graphite 75 Graphite 99 

BG 

   

CG 

   

Tego 

   

H66 

   

In order to more precisely investigate the microstructure, an example of SEM images obtained 
for GB, GG75, and GG99 samples using 0.1 wt.% of BG surfactant is given in Figure 3. 

   
(a) (b) (c) 

Figure 3. SEM micrographs of (a) GB, (b) GG75, and (c) GG99 samples. 

Whatever the sample, a porous structure distributed homogeneously throughout the matrix is 
noticed. The tubular microstructure is attributed to basalt fibers added in all samples. GB samples 
show small spherical pores. More coalesce of pores is observed in the case of GG75 and especially for 
the GG99 sample. Consequently, small differences can be detected in the function of carbon type. 
However, the type of surfactant is responsible for the obtained microstructure. 
  

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 
H66

Molecules 2020, 25, x 5 of 15 

 

Table 2. Visual aspect and internal morphology of samples based on various type of carbon with 0.1% 
addition of different types of surfactants. 

Name of Surfactant 
Internal Morphology 

Biochar Graphite 75 Graphite 99 

BG 

   

CG 

   

Tego 

   

H66 

   

In order to more precisely investigate the microstructure, an example of SEM images obtained 
for GB, GG75, and GG99 samples using 0.1 wt.% of BG surfactant is given in Figure 3. 

   
(a) (b) (c) 

Figure 3. SEM micrographs of (a) GB, (b) GG75, and (c) GG99 samples. 

Whatever the sample, a porous structure distributed homogeneously throughout the matrix is 
noticed. The tubular microstructure is attributed to basalt fibers added in all samples. GB samples 
show small spherical pores. More coalesce of pores is observed in the case of GG75 and especially for 
the GG99 sample. Consequently, small differences can be detected in the function of carbon type. 
However, the type of surfactant is responsible for the obtained microstructure. 
  

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

Molecules 2020, 25, x 5 of 15 

 

Table 2. Visual aspect and internal morphology of samples based on various type of carbon with 0.1% 
addition of different types of surfactants. 

Name of Surfactant 
Internal Morphology 

Biochar Graphite 75 Graphite 99 

BG 

   

CG 

   

Tego 

   

H66 

   

In order to more precisely investigate the microstructure, an example of SEM images obtained 
for GB, GG75, and GG99 samples using 0.1 wt.% of BG surfactant is given in Figure 3. 

   
(a) (b) (c) 

Figure 3. SEM micrographs of (a) GB, (b) GG75, and (c) GG99 samples. 

Whatever the sample, a porous structure distributed homogeneously throughout the matrix is 
noticed. The tubular microstructure is attributed to basalt fibers added in all samples. GB samples 
show small spherical pores. More coalesce of pores is observed in the case of GG75 and especially for 
the GG99 sample. Consequently, small differences can be detected in the function of carbon type. 
However, the type of surfactant is responsible for the obtained microstructure. 
  

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

Molecules 2020, 25, x 5 of 15 

 

Table 2. Visual aspect and internal morphology of samples based on various type of carbon with 0.1% 
addition of different types of surfactants. 

Name of Surfactant 
Internal Morphology 

Biochar Graphite 75 Graphite 99 

BG 

   

CG 

   

Tego 

   

H66 

   

In order to more precisely investigate the microstructure, an example of SEM images obtained 
for GB, GG75, and GG99 samples using 0.1 wt.% of BG surfactant is given in Figure 3. 

   
(a) (b) (c) 

Figure 3. SEM micrographs of (a) GB, (b) GG75, and (c) GG99 samples. 

Whatever the sample, a porous structure distributed homogeneously throughout the matrix is 
noticed. The tubular microstructure is attributed to basalt fibers added in all samples. GB samples 
show small spherical pores. More coalesce of pores is observed in the case of GG75 and especially for 
the GG99 sample. Consequently, small differences can be detected in the function of carbon type. 
However, the type of surfactant is responsible for the obtained microstructure. 
  

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

In order to more precisely investigate the microstructure, an example of SEM images obtained for
GB, GG75, and GG99 samples using 0.1 wt.% of BG surfactant is given in Figure 3.

Molecules 2020, 25, x 5 of 15 

 

Table 2. Visual aspect and internal morphology of samples based on various type of carbon with 0.1% 
addition of different types of surfactants. 

Name of Surfactant 
Internal Morphology 

Biochar Graphite 75 Graphite 99 

BG 

   

CG 

   

Tego 

   

H66 

   

In order to more precisely investigate the microstructure, an example of SEM images obtained 
for GB, GG75, and GG99 samples using 0.1 wt.% of BG surfactant is given in Figure 3. 

   
(a) (b) (c) 

Figure 3. SEM micrographs of (a) GB, (b) GG75, and (c) GG99 samples. 

Whatever the sample, a porous structure distributed homogeneously throughout the matrix is 
noticed. The tubular microstructure is attributed to basalt fibers added in all samples. GB samples 
show small spherical pores. More coalesce of pores is observed in the case of GG75 and especially for 
the GG99 sample. Consequently, small differences can be detected in the function of carbon type. 
However, the type of surfactant is responsible for the obtained microstructure. 
  

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

1cm 1cm 1cm 

Figure 3. SEM micrographs of (a) GB, (b) GG75, and (c) GG99 samples.

Whatever the sample, a porous structure distributed homogeneously throughout the matrix is
noticed. The tubular microstructure is attributed to basalt fibers added in all samples. GB samples
show small spherical pores. More coalesce of pores is observed in the case of GG75 and especially
for the GG99 sample. Consequently, small differences can be detected in the function of carbon type.
However, the type of surfactant is responsible for the obtained microstructure.
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2.2. Dielectric Properties

The previous data highlight that the BG is the surfactant that provides the best expansion;
consequently, it is retained with 0.1 wt.% addition. Several samples based on this content with three
different types of carbon (biochar, graphite 75, and graphite 99) were synthesized, and their dielectric
properties were investigated (ε (a), tan δ (b), and µ (c) at 2.45 GHz) (Figure 4). All samples present
similar behaviors, increasing carbon contents, and induce an increase of ε values (Figure 4a). Samples
without carbon addition (G) present an ε value of 1.987; addition of 3% of carbon induces an increase of
the ε value to 2.26 for biochar. The ε increases slowly up to a rate of 7%, and beyond that, there is a sharp
increase to a value of 18.35 for 15% biochar. This can be explained by the percolation rate being much
higher than the conduction threshold, in accordance with percolation theory [33]. The same tendency
is observed as for ε for the dielectric loss function of carbon content for samples based on biochar,
graphite 75, and graphite 99 (Figure 4b). Essentially, the formation of macro pore channels leads to an
apparent enhancement of dielectric properties in agreement with the porosity [34]. The value of tan
δ for samples without carbon insertion was approximately 0.1. Upon increasing the carbon content,
the tan δ values increase for all compositions. For example, for samples based on biochar, the values
varied between 0.19 and 0.45 for additions between 3 and 15%. All compositions (Figure 4c) showed
similar values of µ, approximately 1, owing to the diamagnetic property of carbon [35]. The same
behavior was reported in the literature for composites based on graphite; when graphite content
is increased, the dielectric constants of the composite increased gradually, whereas the magnetic
constants stayed almost unchanged, indicating that dielectric losses are the main microwave-absorbing
mechanism of the composites [36]. The dielectric data as a function of humidity are provided in Table 3.
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Table 3. Values of ε, tan δ, and µ for the various samples at 2.45 GHz, 20 ◦C, and different humidity.

Type of Carbon

Humidity (%)

50 (during 12 days) 85 (4 days) 50 (3 days)

ε tan δ µ ε tan δ µ ε tan δ µ

Biochar 2.7 0.13 1.04 4.27 0.37 1.04 2.75 0.16 1.09
Graphite 75 2.47 0.09 1.00 3.82 0.28 0.98 2.50 0.11 1.03
Graphite 99 2.87 0.12 1.01 4.76 0.35 1.00 2.95 0.15 1.07

The samples were kept at 20 ◦C at 50% relative humidity (RH) for 12 days; then, they were
maintained at 20 ◦C at 85% RH for 4 days and returned to 50% HR for 3 days. The increase of humidity
induced an ε increase of 150% regardless of the sample. For the samples based on biochar, the initial ε
was 2.26 at 40% humidity. Increasing the humidity to 50% and using a climatic chamber to control the
humidity, the ε values increased to 2.7; at a humidity of 85%, the ε increased to 4.27. Upon setting
the humidity to 50% RH, the values remained approximately the same as the initial values. The same
tendency was observed for tan δ. The same behavior was reported in the literature for polymeric
composites; upon increasing the humidity from 30% to 90%, the dielectric values increased [36].
Humidity affects the permittivity and the loss tangent, and an increase is observed, as well as an
increase in humidity; however, the values decreased with humidity. This behavior has been previously
observed and was attributed to water and cation mobility in the geopolymer [37]. The values of µ
remained at approximately 1 for all compositions owing to the diamagnetic properties of carbon.
Humidity did not affect the magnetic properties. The same behavior was observed in our previous
study on a dense geopolymer with magnetite addition [37]. To ensure the accuracy of the magnetic
data, 1% addition of magnetite (particle size 44 µm) was added to the GG99 sample to investigate the
effect of magnetite and humidity on the composition. Figure 5 presents the evolution of the µ values
at different humidity (40, 50, and 85%) for both samples (GG99 and GG99F1). The µ values for both
samples were close to 1 for all humidities owing to the low concentration of magnetite used (1%).
The small difference between the µ values upon magnetite addition was in accordance with the values
of permeability found in prior studies for geopolymer composites [38]. Magnetite addition induced a
slight increase in permeability values owing to the magnetic properties of magnetite. The permeability
of magnetite powder for a particle size between 28 and 63 µm at 25 ◦C and a frequency of 2.45 GHz
is between 2 and 3 according to the literature [39,40]. The increase in water content after humidity
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exposure can be explained by the increase in free and physiosorbed water. This type of water favors
the mobility of free K+ and increases the electrical conductivity of the geopolymer [41]. This suggests
a modification of the dielectric properties under a relative humidity change. Humidity affects the
dielectric properties (permittivity and tan δ), but has a slight effect on the permeability. Some recent
studies have shown a relationship between humidity and permeability. For example, Cerovic et al. [42]
have shown an increase of permeability with the increase of relative humidity, which is most intense
with highly moisture-dependent materials such as cotton. They explain that this is because water
molecules enhance electric polarization. Li et al. [43] have demonstrated that different moisture
amounts inside concrete may affect its relative permeability, because water is a weak magnetic medium
that exists in concrete in the form of a pore solution.
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3. Discussion

To understand the changes in ε and tan δ as a function of each type of carbon, we plotted Figure 6
to show their changes as a function of the porosity data (size pore and volume expansion). The ε
value increased with the pore size (Figure 6a). Samples based on biochar presented an ε value of 2.27
for a pore size of 1.6 mm, graphite 75-based samples presented values of ε of 2.41 and a pore size
of 1.7 mm, and graphite 99-based samples presented an ε value of 2.7 and a pore size of 2.53 mm.
The higher pore size in the case of graphite 99 is owing to its crystallinity and the purity of this carbon
hierarchical structure [43], as can be observed on the X-ray diffraction (XRD) pattern. In graphite
75-based samples, the fly ash may participate in the geopolymerization reaction, which strengthens
the foam skeleton and limits the coalescence of pores; therefore, the pore size decreases. Indeed,
the chemical elements Al and Si contained in the fly ash could participate in the polycondensation
reaction to modify the geopolymer network and reinforce the solid skeleton. Furthermore, it was
found in the literature that, for alkali-activated materials based on fly ash, the porosity decreased
with the increase in fly-ash content, inducing an increase in the dielectric values. The porosity was
inversely proportional to the dielectric value, meaning that, when the porosity increases, the values of
ε decrease [44]. Biochar was also proven to participate in the geopolymerisation reaction [32], leading
to a lower pore size. Previous work of Farges et al. [32] has demonstrated that geopolymers based on
biochar can be obtained. Several type of geopolymers such as foam or dense were synthetized with
different working properties. Furthermore, most organic compounds have only a small or modest
impact on the permittivity, whereas inorganic fillers are very effective with a high dielectric constant,
such as carbon black and TiO2. This is owing to the dipole moments in the repeat units, which do
not balance each other. Consequently, the presence of some impurities, such as organic compounds
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or fly ash, in the carbon content could affect the dielectric properties. The dielectric constant is also
affected by the free volume, which is the volume that is not occupied by the molecules or repeat units.
A decrease in the dielectric constant induces a decrease in polarizable groups per unit volume owing
to crystallization, which increases the free volume [45]. The same occurs for pores, which are filled
with air whose relative permittivity is approximately one [45].
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The µ values decreased with an increase in volume expansion (Figure 6b). Samples based on
biochar had the highest volume expansion, whereas for graphite, increasing the carbon content induced
a decrease in the volume expansion. The permeability of geopolymers based on various types of carbon
(graphite or carbon fibers) typically fluctuates around 1 to 1.1 [38,46]. Different amounts of magnetic
impurities can be found in the carbon precursor that can induce intrinsic magnetism in these samples.
If some finely dispersed impurity was present in the starting powder, it could undergo clusterization.
Some sharp changes in the magnetic properties could result from such a process [47]. For fly ash,
increasing its content was found to induce an increase in the magnetic properties owing to the higher
iron content and presence of more magnetic minerals [48]. Indeed, if there is magnetite addition,
the values are supposed to increase when holding the value of magnetite at 2.5 [39,40]. None of the
magnetic properties were found to vary consistently with volume expansion, although changes in
magnetic properties with porosity could be detected using magnetic measurements [49]. Consequently,
the nature of carbon (purity and crystallinity) influences in a major part the dielectric properties and
seems to have little effect on the magnetic one. Indeed, low ε values can be obtained for low pore size
samples and with impure carbon.

4. Materials and Methods

4.1. Materials and Synthesis

The materials used for the synthesis of the geopolymer samples were silicate solution S1 with Si/K
molar ratios of 0.54 and M4 metakaolin with a Si/Al molar ratio of 1 [14]. To obtain a material with
dielectric properties, three types of carbon were used with different carbon contents, biochar (81% of
carbon) and two types of graphite with 75 wt.% and 99 wt.% of carbon (Table 4). Various percentages
of carbon were used: 3, 5, 7.5, 10, 12.5, and 15 wt.%. XRD patterns (Figure 7) confirm the purity of
graphite 99 wt.%. For graphite with 75 wt.%, impurities detected are magnetite, hematite, corundum,
and aluminium magnesium alloy, which are attributable to fly ash. Biochar pattern exhibits a broad
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dome centered at about 22.5◦, characteristic of the amorphous structure in addition to crystalline
phases such as sylvite, calcite, and dolomite.

Table 4. Carbon type details.

Carbon Type Supplier Carbon (%) Particle Size (µm) Impurities (%)

Biochar Maillot 81 4–119 19
Graphite 75

Alfa Aesar
75 45 25

Graphite 99 99 45 1Molecules 2020, 25, x 10 of 15 
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Figure 7. X-ray diffraction (XRD) patterns of (a) biochar, (b) G75, and (c) G99 (where
G—graphite-2H 00-041-1487, Si—SiO2 00-061-0035, H—hematite 00-033-0664, C—corundum
04-004-5434, A—aluminium magnesium 04-007-1292, M—magnetite 01-074-1909, K—KCl 01-076-3384,
Ca—calcite 00-066-0867, D—dolomite 01-083-5726).

Various types of surfactants were used to investigate the influence on the volume expansion
(Table 5). Basalt fibers (length of 3 mm) were used to reinforce the matrix for mechanical properties.

Table 5. Surfactants details.

Name of Surfactant Supplier Type pH Density (g/cm3) CMC (ppm at 25 ◦C)

TRITON™ BG-10 (BG)
Dow

nonionic 7.6 1.152 1591
TRITON™ CG-110 (CG) nonionic 5.7 1.150 1748

CAFLON APG C6 SMP (APG) Univar B.V. nonionic 7–9 1.150–1.170 *
SPAN™ 80-LQ-(RB) (LQ) Croda nonionic * * *

TEGO® Dispers 653 (Tego) Evonik anionic 8–9 1.075 *
TRITON™ H-66 (H66) Dow anionic 8.4 1.249 *

* data not provided.

Figure 8A shows the synthesis protocol for the geopolymer samples. The silicate solution was
combined with metakaolin, basalt fibers, and surfactants with different quantities and types of carbon.
The obtained mixtures (Si/Al molar ratio is 1.4, Si/K molar ratio is 1.79, and Si/C molar ratio is 1) were
placed in a closed mold at 70 ◦C for 1 day. Samples (86 × 43 × 10 mm) for the dielectric measurements
were made, as presented in Figure 8B.
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Figure 8. (A) Synthesis protocol of geopolymer samples and (B) shaping for dielectric measurements
for samples.

The metallic mold was fixed using screws and screw nuts between the polyethylene plates.
The reactive mixture was casted in the metallic mold and covered. Samples were kept at 70 ◦C for
1 day and afterwards removed from the plates and dried in a vertical position for 1 day. After the
drying process, the samples presented no cracks, but some pores were observed on the surface.
To investigate the influence of humidity, samples were kept at a controlled humidity. The cycle of
humidity treatment is presented in Figure 9. During the first days, samples were kept at 20 ◦C at
50% humidity, and then at 85% humidity for 5 days; then, the humidity was changed back to 50% for
3 more days. The nomenclature and compositions of the samples are presented in Table 4. Samples
were identified as GCx, where G represents the reference composition, C represents the type of carbon
(B—biochar, G75 and G99—the two types of graphite with 75 and 99% of carbon), and x is the percentage
of carbon used (3, 5, 7.5, 10, 12.5, or 15%) in the composition.
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4.2. Technical Characterization

The volume expansion was calculated using Equation (1):

∆h =
(hf − hi)

hi
× 100 (1)

where ∆h—volume expansion (%); hi—initial height before thermal treatment (mm); hf—final height
after thermal treatment (mm).

X-ray diffraction patterns were acquired via X-ray diffraction (XRD) experiments on a
Bruker-D8 Advance diffractometer Bragg Brentano powder diffractometer using CuKα radiation
(λKα = 0.154186 nm). The analytical range is between 5◦ and 50◦ (2θ) with a step of 0.015◦/s.

The morphology of the material was observed using JOEL IT300. A carbon fine layer was
deposited on the samples before the observations.

The pore size distribution is established from analyses of different sections of the sample at
different heights using the Image J software [27]. The pore diameters are counted according to their
size in order to determine the value of the average diameter Γv [50,51] of each cut calculated using
Equation (2) [52]:

Γv =

∑n
i=0 nid4

i∑n
i=0 nid3

i

(2)

where Γv—average diameter (mm); di—the pores diameter of class i; ni/n—the ratio of the number of
pores of class i to the total number of pores.

Dielectric measurements were carried out using a Vector Network Analyzer (VNA) Keysight
E5063A, which provided high-precision scattering parameters (Sij) from which the dielectric and
magnetic parameter values were extracted (permittivity, permeability, and loss tangent). For more
homogeneous measurements and characterization of the samples, the loaded rectangular waveguide
method was chosen despite its reduced frequency band in the mono mode operation (fcTE10 = 1.735 GHz
and fcTE20 = 3.47 GHz for the WR340 standard used in this study). Measurements of standard
samples (Plexiglas and Teflon) were made, and comparisons of complex permittivity extracted by
the Nicolson-Ross-Weir (NRW) algorithm [53,54] and by another free space method [55] showed
good agreements and validated the entire process. The sample was connected by a phase- and
amplitude-stable cable to a VNA, which was then calibrated by Thru, Reflect, Line (TRL) calibration
technic with WR340 standards. Figure 10 shows an example of dielectric measurements of the GB3

samples between 2 and 3.3 GHz. Dielectric measurements were performed to determine the values of
the real part of the dielectric constant, which is known as the real part of the relative permittivity (ε’r)
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and indicates the ability of the material to store microwave energy, tan δε and tan δµ (not taking account
diamagnetic materials), which are the dielectric and magnetic losses that quantify a dielectric material’s
inherent dissipation of electromagnetic energy. The values of ε, for frequencies between 2 and 3.3 GHz,
for this composition were approximately 2.5, whereas tan δ values were approximately 0.1.
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5. Conclusions

The objective of this work is the synthesis route of a new eco-friendly geopolymer for applications
as absorbent material with various compositions and additives. The effects of the formulation based
on various type of carbon, surfactant, and magnetite were investigated.

• Surfactant addition induces the volume expansion owing to a change in interfacial strength.
However, the nonionic surfactant was preferred over the anionic surfactant, thanks to its
performance on the volume expansion at lower concentrations.

• Dielectric investigations reveal an increase of permittivity with increasing carbon content,
for example, ε = 2.27 and tan δ value of 0.19.

• The addition of magnetite reveals only a minor impact on the samples magnetic properties.
• An increase is observed with increasing humidity, but a reversible behavior is observed when the

humidity is decreased.
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